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We generalize the classical probability frame by adopting a wider family of random
variables that includes non-deterministic ones. The frame that emerges is known to host
a “classical” extension of quantum mechanics. We discuss the notion of probabilistic
correlation and show that it includes two kinds of correlation: a classical one, which
occurs for both deterministic and indeterministic observables, and a non-classical one,
which occurs only for indeterministic observables. The latter will be called probabilistic
entanglement and represents a property of intrinsically random systems, not necessarily
quantum. It appears possible to separate the two kinds of correlation and characterize
them by numerical functions which satisfy a simple product rule.
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1. INTRODUCTION

Though the notion of entanglement is an intensively discussed concept of
quantum mechanics, it is hard to find in the literature a precise definition of this
concept (we refer to Bruß, 2001) for various characterizations of entanglement).
Our attempt here is to develop a probabilistic formulation of the entanglement as
a specific kind of correlation.

The probabilistic framework we will adopt is summarized in Section 2: it rests
on the usual Kolmogorovian formulation of probability theory but it allows a wider
family of random variables in order to encompass indeterministic behaviours.
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When we speak of correlations we always mean correlations among results
of a joint measurement of two or more observables at some state. In the classical
deterministic case there is no joint observable other than the product joint observ-
able, so that the occurrence of a correlation depends only on properties that are
coded in the state of the physical system. In particular, no correlation can occur
when the state is pure, namely when we have to do with a maximal information
about the preparation of the physical system. Things are different, as discussed in
Section 3, when we deal with indeterministic observables: the choice of a joint
observable is, in general, no longer unique and the occurrence of a correlation be-
comes a function of that choice. New kinds of correlations emerge and the notion
of entanglement will appear related to the fact that a non-product joint observable
can give rise to a correlation even if the physical system is in a pure state.

2. PROBABILISTIC PHYSICAL SYSTEMS

We provide here a probabilistic framework that appears general enough to
host the description of physical objects showing an intrinsic random behaviour.
As usual, the basic ingredients are the physical notions of states and observ-
ables, whose counterparts in the language of probability theory are the probability
measures on the sample space and the random variables.

The states of a probabilistic physical object are pragmatically identified with
the possible ways of preparing statistical ensembles of samples of the object under
discussion. The set of all states carries the natural convex structure which mirrors
the possibility of performing statistical mixing of ensembles. We assume that the
convex set of states can be identified with (is affinely isomorphic to) the convex
set M+

1 (�) of all probability measures on a measurable space (�;B(�)), often
called the phase space of the physical system (B(�) stands for a Boolean algebra
of measurable subsets of � ). We assume further that every one-point subset of �

is measurable, so that {ω} ∈ B(�) for every ω ∈ �. The last assumption implies
that all Dirac measures δω, ω ∈ �, belong to M+

1 (�), so representing particular
states called pure states. Non-pure states are also called mixed.

Notice that, due to the particular convex structure of M+
1 (�), a mixed state

has the classical property of admitting a unique decomposition into pure states:
this alludes to the fact that the family of observable properties of the physical
system under discussion will be rich enough to separate the elements of M+

1 (�).
There is no distinguished probability measure on �; all probability measures on �

are considered as possible states of the probabilistic (randomly behaving) physical
system.

We restrict our attention to a special (nevertheless sufficiently large) class of
experiments, or measurements with random outcomes (see, for instance, Busch
et al., 1996; Holevo, 1982): any measurement on a probabilistic physical system
is performed on a state, so on an ensemble of identically prepared samples of
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the physical system, and results in a probability distribution on the space of
the possible outcomes of single individual measurements. Equivalence classes
of measurements are called observables (observable properties). Therefore, an
abstract description of an observable is a map

A : M+
1 (�) → M+

1 (�)

which transforms states into probability distributions on the space � of the out-
comes of the observable; the measurement of A at the state µ ∈ M+

1 (�) will
produce the measure Aµ ∈ M+

1 (�) to be called the outcome measure. Clearly, the
outcome space has to be measurable: we will further assume that every one-point
subset of � is measurable, namely, {ξ} ∈ B(�) for every ξ ∈ �.

All observables we are going to consider react linearly on the mixing of
ensembles; thus, an observable should be an affine (i.e. convexity preserving)
map, explicitly: A(λµ1 + (1 − λ)µ2) = λAµ1 + (1 − λ)Aµ2 for every µ1, µ2 ∈
M+

1 (�) and every real number λ, 0 ≤ λ ≤ 1.

It is natural (see Bugajski, 2001) to assume that every observable A :
M+

1 (�) → M+
1 (�) satisfies the condition

(Aµ)(X) =
∫

�

(Aδω)(X) µ(dω) (1)

for every X ∈ B(�) and every state µ ∈ M+
1 (�). This measurability condition

expresses the specific property that an observable is uniquely defined by the
outcome measures it associates to the pure states.

2.1. Deterministic and Indeterministic Observables

An observable A : M+
1 (�) → M+

1 (�) will be called deterministic if it as-
sumes a well-defined value at every pure state; formally if it maps Dirac measures
on (�;B(�)) into Dirac measures on (�;B(�)). In other words, the determin-
istic observables have no dispersion on pure states. The affine character of the
observables implies that a deterministic observable can exhibit some randomness,
or some dispersion, when it acts on a mixed state. However, this stochastic aspect
is fully reducible to the mixed character of the state. It is easy to see that deter-
ministic observables correspond just to �-valued random variables of the standard
probability theory (see Bugajski, 2001).

Observables which are not deterministic exhibit an inherent randomness: at
some pure states they show dispersion, i.e., they generate diffused probability
measures on the outcome space.

The distinction between deterministic and indeterministic observables is of
a deep nature. The traditional notion of random variable mirrors our notion of
deterministic observable: the classical probability theory which admits only de-
terministic observables describes merely a lack of information in a deterministic
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world. The concept of non-deterministic observable implies in general a non-trivial
statistical dispersion of possible results of an observation even in presence of a
maximal information about the preparation of the physical system. The probabilis-
tic framework here introduced, which includes the occurrence of indeterministic
observables, belongs to the so called operational probability theory (seeBeltrametti
and Bugajski, 1995; Bugajski, 1996, 2001) and is able to describe an irreducible
randomness—either inherent or produced by an uncontrolled outer influence.

It is evident that typical quantum-mechanical observables have an indeter-
ministic nature. It has been shown elsewhere (see Beltrametti and Bugajski, 1995;
Bugajski, 1996) that the operational probabilistic framework here described can
host an extension of quantum mechanics. Notice that if we call � the set of pure
states of a quantum system, then the usual family of the quantum-mechanical
observables is not rich enough to separate M+

1 (�): indeed we know that the usual
quantum mixed states have infinitely many convex decompositions into pure states.
In the extension of quantum mechanics alluded to, the quantum observables are
embedded into the bigger family of the observables on M+

1 (�), which is actually
rich enough to separate distinct convex combinations of pure states.

2.2. Joint Observables

We have defined an observable without any specific characterization of its
outcome space �. When the outcome space takes the structure of the Cartesian
product � = �1 × �2, then the observable A : M+

1 (�) → M+
1 (�1 × �2) defines

two observables

Ai = �i ◦ A, i = 1, 2,

where �i : M+
1 (�1 × �2) → M+

1 (�i) is the marginal projection, i.e.,

�1ν(X1) = ν(X1 × �2), �2ν(X2) = ν(�1 × X2) ,

for every ν ∈ M+
1 (�1 × �2), Xi ∈ B(�i), i = 1, 2 .

The observable A : M+
1 (�) → M+

1 (�1 × �2) is called a joint observable
of A1 and A2. It should be stressed, however, that a pair of observables
A1 : M+

1 (�) → M+
1 (�1), A2 : M+

1 (�) → M+
1 (�2) admits, in general, many joint

observables.
A particular joint observable for A1 and A2 is the product one, denoted

A1 ×� A2, and defined by

A1 ×� A2 δω = A1δω ×� A2δω (2)

for every ω ∈ � (see Beltrametti and Bugajski, 1995; Bugajski, 1996, 2001),
the symbol ×� in the right-hand-side standing for the usual product of mea-
sures (if νi ∈ M+

1 (�i), i = 1, 2, then ν1 ×� ν2(X1 × X2) = ν1(X1)ν2(X2) for ev-
ery Xi ∈ B(�i), i = 1, 2). The definition is exhaustive thanks to the condition
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of measurability expressed by Equation (1). As the product observable A1 ×� A2

does exist for every pair A1, A2, any two observables pertaining to a probabilistic
physical system are co-measurable, what is commonly considered as a feature
characterizing “classical” theories. In this sense, the present framework behaves
as “classical” though only the deterministic observables have a counterpart in
classical mechanics and in standard classical probability theory.

Any pair of deterministic observables has a unique joint observable, the
product observable, in full agreement with the standard probability theory (where
the joint observable is usually called the “random vector”), while a joint observable
of two indeterministic observables is non-unique.

Writing J (A1, A2) to denote a joint observable of A1 : M+
1 (�) → M+

1 (�1)
and A2 : M+

1 (�) → M+
1 (�2), the measure J (A1, A2)µ ∈ M+

1 (�1 × �2), i.e. the
statistical result of the measurement of J (A1, A2) at µ ∈ M+

1 (�), clearly deter-
mines the statistical results of measurements of both A1 and A2 at the state µ.

Thus, the joint observable J (A1, A2) can be interpreted as a particular method for
a simultaneous measurement of A1 and A2. Various joint observables would then
correspond to various ways of performing simultaneous measurements.

On the other hand, the fact that A1µ and A2µ do not determine uniquely
J (A1, A2)µ suggests that a simultaneous measurement of A1 and A2 could even
be performed directly, without measuring any joint observable of them. Indeed,
one could measure A1 on every second member of the statistical ensemble µ, and
A2 on the other members. Such a measurement provides directly two probability
measures A1µ and A2µ without any joint measure of them.

This means that the concept of a simultaneous measurement of two or more
observables does not coincide with the concept of a joint measurement. The former
is surely more general than the latter, but a measurement of a joint observable is
more “informative”: it provides also the correlations that might emerge between,
or among, the observables.

3. PROBABILISTIC CORRELATIONS

We assume the common-sense concept of correlation: two parameters are
correlated whenever they are not independent. The notion of correlation can be
understood in various ways, for instance, in algebraic terms as a (non-trivial)
relation, or as a fuzzy relation, but here we mean the probabilistic version of
that concept; hence, we speak about probabilistic (or stochastic) correlation and
probabilistic (or stochastic) independence.

Consider two parameters and let �1, �2 be the (measurable) sets of their
possible values; given a measure ν ∈ M+

1 (�1 × �2) we say, according to the
standard probability theory, that the two parameters are mutually independent
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relative to ν iff

ν = �1ν ×� �2ν, (3)

explicitly, iff ν(X1 × X2) = (�1ν)(X1)(�2ν)(X2) for every Xi ∈ M+
1 (�i),

i = 1, 2. If ν has not this product form, the two parameters will be considered
correlated relative to ν.

It is an immediate consequence of this definition the fact that the two param-
eters are independent at every Dirac measure δ(ξ1,ξ2) because

δ(ξ1,ξ2) = δξ1 ×� δξ2 , for every ξ1 ∈ �1, ξ2 ∈ �2.

Thus, we see that two parameters can be correlated only relative to a measure
ν ∈ M+

1 (�1 × �2) having the form of a mixture; notice however that the mixed
nature of ν is not a sufficient condition to produce correlation (for instance, if
�1 = �2 we have independence relative to the symmetrized mixture 1

4 (δ(ξ1,ξ1) +
δ(ξ1,ξ2) + δ(ξ2,ξ1) + δ(ξ2,ξ2))).

Let us stress that our definition of correlation as the negation of independence
does not overlap exactly with the traditional one assumed in standard probability
theory, where a correlation coefficient is introduced which quantifies to what
extent the joint distribution ν ∈ M+

1 (�1 × �2) deviates from a one concentrated
on a line, so that ν is said to carry a correlation if such a coefficient does not
vanish. If ν = �1ν ×� �2ν, namely if the parameters are independent relative to
ν, then the correlation coefficient equals zero. This always happens if ν is a Dirac
measure. However, the vanishing of the correlation coefficient does not imply that
ν = �1ν ×� �2ν; simple examples can be found in textbooks (see, e.g., Pfeiffer,
1965, pp. 328–329). That means that the correlation coefficient provides only a
coarse characterization of the concept of correlation adopted here.

Let us now come to the notion of independence and correlation of observables.
A pair of observables, say A1 : M+

1 (�) → M+
1 (�1), A2 : M+

1 (�) → M+
1 (�2),

does not produce at a state µ ∈ M+
1 (�) any well-defined measure on the prod-

uct of the outcome sets �1 × �2. Consequently, it makes no sense to speak of
independence (or correlation) of two observables without reference to some joint
observable: the concept of independence should be relative to a particular joint
observable, so to a particular way the two observables are paired together. Thus,
the notion of independence expressed by Equation (3) brings us to the following
definition:

Two observables A1 : M+
1 (�) → M+

1 (�1), A2 : M+
1 (�) → M+

1 (�2) are in-
dependent at the state µ ∈ M+

1 (�) relative to the joint observable J (A1, A2) :
M+

1 (�) → M+
1 (�1 × �2) iff J (A1, A2)µ = A1µ ×� A2µ.

Accordingly, we say that two observables A1 and A2 are correlated (mutually
dependent) at the state µ relative to the joint observable J (A1, A2) iff

J (A1, A2)µ �= A1µ ×� A2µ. (4)
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Though familiar examples of correlated observables often refer to compound
systems, it should be noticed that the aforementioned concept of correlation does
not require any restriction about the nature of the physical system (features arising
in standard quantum mechanics are discussed in Beltrametti and Bugajski, 2003,
2004).

3.1. Classical Correlations and Probabilistic Entanglement

Among the possible joint observables of A1 and A2 there is always the product
A1 ×� A2 characterized by the property expressed by Equation (2) which ensures
the independence of any two observables A1, A2 at every pure state, relative to
A1 ×� A2. Clearly, for a non-pure state µ ∈ M+

1 (�), the measure A1 ×� A2 µ has
the form of a mixture and, as already noticed, we have, in general,

A1 ×� A2 µ �= A1µ ×� A2µ. (5)

In view of the independence of A1 and A2 at every pure state, the occurrence of
a correlation in A1 ×� A2 µ has to be interpreted as due to properties coded in the
mixed state µ. Thus, we can view the joint observable A1 ×� A2 as representing
the correlation-free way of pairing A1 and A2, because a correlation appearing
in A1 ×� A2 µ is generated by the state µ, namely by the way the pure states are
mixed together to form µ.

In the standard classical case, where only deterministic observables come into
play, the product A1 ×� A2 is known to be the unique joint observable of A1, A2:
the correlation carried by A1 ×� A2 µ thus becomes the only possible correlation.
This is why this correlation, which depends only on properties coded in the mixed
state µ of the physical system, will be called the classical correlation.

Clearly, when we speak of the classical correlation carried by A1 ×� A2 µ

we are not committed to assume that A1 and A2 are deterministic: the classical
correlation can appear also in a non-deterministic framework

But when we deal with two indeterministic observables A1, A2, the prod-
uct A1 ×�A2 is no longer the only possible joint observable. A joint observable
J (A1, A2) differing from A1 ×� A2 can produce at a state µ a probability distri-
bution J (A1, A2)µ carrying an additional correlation, which will depend on the
particular way the two observables are paired together to form J (A1, A2). Thus,
we expect that the correlation contained in the outcome measure J (A1, A2)µ can
be described as coming from two mutually independent factors: (i) the classical
correlation inherent to the state µ; and (ii) the possible additional correlation, to
be called probabilistic entanglement, introduced by the joint observable in ques-
tion. Due to this second factor, the total correlation contained in the distribution
J (A1, A2)µ should be different for different joint observables of A1 and A2.

Typical of the probabilistic entanglement, associated to a joint observable
differing from A1 ×� A2, is the fact that it need not vanish at pure states. Since the
classical correlation vanishes at the pure states, any correlation appearing at a pure
state has to be recognized as a probabilistic entanglement.
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The occurrence of correlations at pure states is a characteristic feature of the
quantum behaviour: the “entangled states” of the quantum dictionary are indeed
pure states (of a compound system) and correlations can appear at these states. Let
us stress that familiar expressions like “a state shows entanglement” make sense
only if a joint observable is implicitly referred to (compare with Cabello, 1999)
and, similarly, one could say that “a joint observable shows entanglement” only if
a state is implicitly referred to.

Notice that the familiar EPR, or Bell, correlation is indeed a correlation
occurring at a pure state of a compound system (an “entangled” state) and relative
to a joint observable (the tensor product of the two observables involved) which
is not a product joint observable in the sense of Equation (2). What we have
called probabilistic entanglement encompasses the quantum idea of entanglement,
casting it in a more general framework.

Summing up, given two observables A1 : M+
1 (�) → M+

1 (�1) , A2 :
M+

1 (�) → M+
1 (�2), given a joint observable J (A1, A2) �= A1 ×� A2, and given a

state µ ∈ M+
1 (�), we focus attention on three probability measures on �1 × �2:

A1µ ×� A2µ, A1 ×� A2 µ, J (A1, A2)µ.

The measure A1µ ×� A2µ can be seen as the result of performing an independent
measurement of A1 and A2 at µ and taking formally the product of the two obtained
measures (a joint observable giving the result A1µ ×� A2µ when measured at µ

need not exist). On the contrary, the measures A1 ×� A2 µ and J (A1, A2)µ can
be naturally seen as the result of measuring the product joint observable A1 ×� A2

and, respectively, a non-product joint observable J (A1, A2) at µ. Obviously, all
three measures give back A1µ and A2µ as marginals.

What we have called classical correlation mirrors the departure between
the two measures A1 ×� A2 µ and A1µ ×� A2µ; what we have called probabilistic
entanglement mirrors the departure between the two measures J (A1, A2)µ and
A1 ×� A2 µ. The total correlation at a state µ relative to the (non-product) joint
observable J (A1, A2) mirrors the departure between J (A1, A2)µ and A1µ ×� A2µ.
In the next section, the separation between classical correlation and probabilistic
entanglement will be made clear by introducing their density functions (features
arising in standard quantum mechanics are discussed in Beltrametti and Bugajski,
2003, 2004).

3.2. Correlation Density Functions

We will be interested in comparing two measures, say ν̃, ν, on a measurable
space having the form �1 × �2. The Radon-Nikodym, or density function, of ν̃

relative to ν is a function dν̃/dν : �1 × �2 → R+ such that

ν̃(X) =
∫

X

dν̃

dν
ν(d(ξ1, ξ2)) for every X ∈ B(�1 × �2).
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This Radon-Nikodym derivative provides a complete description of the measure
ν̃ (given ν), hence it also contains all informations on the correlations inherent
to ν̃.

Let us now come to the three measures A1µ ×� A2µ, A1 ×� A2 µ, and
J (A1, A2)µ discussed in the previous section, and consider the three density
functions from �1 × �2 into R+ (provided they exist, see the appendix):

ρc = d(A1 ×� A2 µ)

d(A1µ ×� A2µ)
, ρe = d(J (A1, A2)µ)

d(A1 ×� A2 µ)
, ρt = d(J (A1, A2)µ)

d(A1µ ×� A2µ)
(6)

The classical correlation is fully characterized by the density function ρc, which
describes the departure between the measure A1 ×� A2 µ associated to the prod-
uct joint observable and the measure A1µ ×� A2µ in which A1, A2 behave as
independent. Thus, we call ρc the classical-correlation function.

The departure between the measures J (A1, A2)µ and A1 ×� A2 µ is fully
described by the density function ρe which thus characterizes the probabilistic
entanglement of the observables A1, A2 at the state µ relative to the (non-product)
joint observable J (A1, A2). The density function ρe will thus be called the entan-
glement function.

As already remarked, the total correlation inherent to J (A1, A2) at µ emerges
by comparing the measure J (A1, A2)µ with the measure A1µ ×� A2µ which car-
ries no correlation. An exhaustive description of this correlation is then provided
by the density function ρt which we will call the total-correlation function.

On the other hand, we have seen that the correlations shown by J (A1, A2)µ
can be divided into two parts, characterized by the two functions ρc and ρe

introduced earlier. The three correlation functions are connected together: indeed,
the general theory of the Radon-Nikodym derivatives states that (see e.g. Bauer,
1981, Corollary 2.9.4; or Billingsley, 1979, Section 32)

ρt = ρc ρe. (7)

This simple product formula provides an a posteriori support for the ideas ex-
pressed in the previous section.

Notice that for a pure state µ = δω we have: A1 ×� A2 δω = A1δω ×� A2δω, so
that the classical-correlation function ρc becomes the constant unit function and
we get ρt = ρe.

The calculation of the correlation functions might be hard for a general case,
but concrete situations of interest often involve finite sets of values as well as pure
states or finite mixtures, what makes the calculations handable.

Let the two sets �1, �2 be finite and let ξ1 ∈ �1, ξ2 ∈ �2: if, for instance,
we are concerned with the entanglement function relative to the joint observable
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J (A1, A2) : M+
1 (�) → M+

1 (�1 × �2), then we can write

(J (A1, A2)µ)(X) =
∑

(ξ1,ξ2)∈X

ρe (A1 ×� A2 µ)(ξ1, ξ2)

for every X ∈ �1 × �2. This makes clear that the entanglement function ρe will
take the form

ρe(ξ1, ξ2) = (J (A1, A2)µ)(ξ1, ξ2)

(A1 ×� A2 µ)(ξ1, ξ2)
.

If the state µ is a finite mixture of pure states, say µ = ∑
i λiδωi

, then the numerator
and denominator in the previous equation will take the corresponding form of finite
sums, since J (A1, A2) and A1 ×� A2 act affinely on M+

1 (�).
Let us finally remark that the density functions introduced before can be used

to produce various numerical characterizations of the corresponding correlations.

4. APPENDIX

We collect here some technical results on the existence of the Radon-Nikodym
derivatives used in Section 3.

Lemma 4.1. If ν ∈ M+
1 (�1 × �2) is a discrete measure and ν1 = �1ν, ν2 =

�2ν are its marginals, then ν � ν1 ×� ν2 (i.e., ν is absolutely continuous w.r.t.
ν1 ×� ν2).

Proof: Recall that the defining property of the product measure ν1 ×� ν2 is:

(ν1 ×� ν2)(X1 × X2) = ν1(X1)ν2(X2)

for every X1 ∈ B(�1), X2 ∈ B(�2). If ν(ξ1, ξ2) and ν(η1, η2) are both non-zero
(ξ1, η1 ∈ �1, ξ2, η2 ∈ �2), then ν1(ξ1), ν1(η1), ν2(ξ2), ν2(η2) are all non-zero so
that (ν1 ×� ν2) is different from zero at all points of the set {ξ1, ξ2} × {η1, η2}. This
implies that ν(X) = 0 for some X ∈ B(�1 × �2) implies (ν1 ×� ν2)(X) = 0, what
is equivalent to ν � ν1 ×� ν2 . �

Notice that the discreteness restriction is crucial as the following counterex-
ample (suggested by P.J. Lahti and A. Dvurecenskij) shows. Take for �1 and �2

the real interval [0, 1], let ν1, ν2 be Lebesgue measures on �1, �2 respectively,
and define ν ∈ M+

1 (�1 × �2) by ν(X1 × X2) = ν1(X1 ∩ X2) (where X2 ⊆ �2 is
identified with the corresponding subset of �1) so that ν is concentrated at the
main diagonal {(ξ, ξ ) | ξ ∈ [0, 1]} of the square �1 × �2. Clearly, ν1 and ν2 are
marginals of ν, however ν1 ×� ν2 is the Lebesgue measure on �1 × �2 that vanishes
on the main diagonal so that ν is not absolutely continuous w.r.t. ν1 ×� ν2.
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The property stated in this Lemma ensures the existence of the Radon-
Nikodym derivative dν/d(ν1 ×� ν2) which is (see Bauer, 1981, Theorem 2.5.5)
ν1 ×� ν2-almost everywhere finite. This result can be applied to ensure the existence
of the density functions ρc and ρt occurring in Equation (6), provided the measures
A1 ×� A2 µ and J (A1, A2)µ are discrete.

Concerning the entanglement function ρe we make use of the following
corollary.

Corollary 4.1. Let J (A1, A2) : M+
1 (�) → M+

1 (�1 × �2) be a discrete joint
observable of A1 and A2. Then, for every µ ∈ M+

1 (�), we have J (A1, A2)µ �
A1 ×� A2 µ

Proof: In view of Equation (1) we have that (A1 ×� A2 µ)(X) = 0 implies
(A1 ×� A2 δω)(X) = 0, µ-almost everywhere. Since the previous lemma ensures
that

J (A1, A2)δω � A1δω ×� A2δω = A1 ×� A2 δω

we also have (J (A1, A2)δω)(X) = 0, µ-almost everywhere. Looking again at
Equation (1) we conclude that (A1 ×� A2 µ)(X) = 0 implies (J (A1, A2)µ)(X) = 0
for every measurable subset X ∈ B(�1 × �2). �

This corollary ensures the existence of the entanglement function ρe occurring
in Equation (6) for every discrete joint observable J (A1, A2).
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